
“Rust looks a lot better than other
disasters” — a Rust introduction

Meetup REWE Digital Ilmenau

Willkommen zu OCaml!

Fun Fact
● First Rust Compiler written in OCaml (bootstrap)

● Rust does not have Bactrian camel (Trampeltier) but

Ferris the Crab

● Ferris would have also been a wonderful title

About me

● 34 years old

● programming since 1998

● Living in Kassel

● Working at REWE Digital for 3 years

● I like video games (Civilization, yay)

● And running (HM PB 1:43:26), Full Marathon Berlin in 1,5 weeks :)

Elmar Athmer

Agenda
1) The Hype

2) Rust’s promises

3) Safety vs Control

4) Rust basics

5) Ownership and Borrowing

6) Not covered

7) Outro & Questions

“Rust looks a lot better than either of
those two disasters”

Who said it?

● “We've had the [...] people who used Modula-2 or Ada, and I have to say Rust looks a lot better than

either of those two disasters.”

● “I'm not convinced about Rust for an OS kernel [...] but at the same time there is no question that C has

a lot of limitations”

● Do you remember…

Source: Linux at 25: Linus Torvalds on the evolution and future of Linux

https://www.infoworld.com/article/3109150/linux-at-25-linus-torvalds-on-the-evolution-and-future-of-linux.html

What about other languages?

● “C++ is a horrible language.” — http://harmful.cat-v.org/software/c++/linus

● “I mean Java — I don’t care about it, what a horrible language” —
https://www.youtube.com/watch?v=Aa55RKWZxxI&t=44s

● “The advantage of GC is that it is automatic. But GC apologists should just admit that it causes bad

problems and often encourages people to write code that performs badly.” —
https://gcc.gnu.org/ml/gcc/2002-08/msg00552.html

http://harmful.cat-v.org/software/c++/linus
https://www.youtube.com/watch?v=Aa55RKWZxxI&feature=youtu.be&t=44s
https://gcc.gnu.org/ml/gcc/2002-08/msg00552.html

What about non-Torvalds?

Stack Overflow Developer Survey 2019

“For the fourth year in a row, Rust is the most loved
programming language among our respondents.”

https://insights.stackoverflow.com/survey/2019#technology-_-

most-loved-dreaded-and-wanted-languages

https://insights.stackoverflow.com/survey/2019#technology-_-most-loved-dreaded-and-wanted-languages
https://insights.stackoverflow.com/survey/2019#technology-_-most-loved-dreaded-and-wanted-languages

Those penguin-lunatics…

Another quote

“Now we’ll peek at why we think that Rust represents the
best alternative to C and C++ currently available.”

“This means that if that software had been written in Rust,
70% of these security issues would most likely have been
eliminated.”

https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe

-systems-programming/

https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming/
https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming/

What's the Baader-Meinhof phenomenon

https://science.howstuffworks.com/life/inside-the-mind/human-brain/baader-meinhof-phenomenon.htm

What is Rust?

● Developed by Mozilla since 2009/2010, 1.0 on 2015-05-15

● Open Source, Multi-paradigm system programming language

● Provides memory safety

● Provides thread safety

● No Garbage Collection

○ No runtime overhead

○ Integrates with other Programming Languages (FFI)

● C++ like performance

● Strong, static typing

https://blog.rust-lang.org/2015/05/15/Rust-1.0.html

Multi-Paradigm, System programming
Oh, and OpenSource of course

● Concurrent

● Functional (“passing functions as values”, map, filter)

● Meta-Programming (Macros)

● Imperative (the “default”)

● Object Oriented (should be familiar for most)

Get the buzzword checklist at wikipedia.

https://en.wikipedia.org/wiki/Comparison_of_multi-paradigm_programming_languages

Multi-Paradigm, System programming
Oh, and OpenSource of course

● Operating Systems

● Software interacting closely with the operating systems

● Web Browsers (are more of a platform)

● In contrast to application development

● Typical examples are

○ C, C++

○ Maybe Go

Side note
How much “performance” is necessary?

● General rule: a developer is more expensive than hardware

● IO is the real cost (that’s why NodeJS works)

● On the other hand — performance is not wrong

○ Developers spend much time NOT coding, so the relative cost for e.g. Rust overhead is small

○ It’s not “worrying about efficiency in the wrong places [...] (premature optimization…)

● Code Rust like your high-level language (map(), clone()), your high-level language is just so

wasteful with EVERY operation

Sometime performance does matter
How much “performance” is necessary?

● Sometimes, costs are relevant: “a real cost saver” (Zalando about Rust with Kubernetes)

● Sometimes, performance is an enabler for new business logic/opportunities: Deliveroo: “[...]

dramatically sped up our dipatch process, and gave us more head-room in which we could try

implementing more advanced algorithms.” (SIC)

● Functions as a service, Google Cloud Run etc.: startup, charged by exact execution time

● IOT, Raspberry Pi: Limited Resources (don’t forget battery)

https://jobs.zalando.com/tech/blog/story-rust/
https://deliveroo.engineering/2019/02/14/moving-from-ruby-to-rust.html

Memory safety, Thread safety?

Use after free
No problem with GC

Source: https://www.owasp.org/index.php/Using_freed_memory

https://www.owasp.org/index.php/Using_freed_memory

Double free
No problem with GC

● Confusion over which part of the program is

responsible for freeing the memory

Source:
https://www.owasp.org/index.php/Doubly_freeing_memory

https://www.owasp.org/index.php/Doubly_freeing_memory

Buffer overflow
Safe if programming language disallows direct memory access

● The buffer to store data overflows

● Nice (german) explanation:
https://www.heise.de/ct/artikel/Das-Sicherheitsloch-28532

0.html

Source: https://www.owasp.org/index.php/Buffer_Overflows

https://www.heise.de/ct/artikel/Das-Sicherheitsloch-285320.html
https://www.heise.de/ct/artikel/Das-Sicherheitsloch-285320.html
https://www.owasp.org/index.php/Buffer_Overflows

Null pointer dereference

● NullPointerException

● “undefined is not a function”

● “can not read property ‘x’ of undefined”

● Aka “The billion dollar mistake”

Ever encountered one of these?

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

Data Race
Not to be confused with race condition

● two or more threads concurrently

accessing a location of memory

● one of them is a write

● one of them is unsynchronized

● Also see
https://www.modernescpp.com/index.php/

race-condition-versus-data-race

Source:
https://doc.rust-lang.org/nomicon/races.html

https://www.modernescpp.com/index.php/race-condition-versus-data-race
https://www.modernescpp.com/index.php/race-condition-versus-data-race
https://doc.rust-lang.org/nomicon/races.html

Safety vs Control

Hello World
Let’s have a look into Rust

● C like syntax
● Main is a simple function
● Type inference
● Variables defined with let

Variables and datatypes
Nothing revolutionary here

● Immutable by default (safety)
● Explicit mutability with mut keyword
● Type annotation after variable name

○ Like TypeScript, Scala, etc.
● Lots of number types (i32, i8-i128,

unsized etc, remember: control)
● Vector as versatile collection type
● Tuples
● Full list

https://doc.rust-lang.org/reference/types.html

https://doc.rust-lang.org/reference/types.html

Null Pointer dereference protection
Must have for modern languages

● Option monad instead of null

● Known as/other solutions
○ Maybe in Haskell

○ Optional in Java

○ Option in Scala

○ strictNullChecks in TypeScript

● Option is an Enum

What else is happening here?
● find() — functional

● Pattern matching

● Shadowing is idiomatic rust

http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Maybe.html
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html
https://www.scala-lang.org/api/current/scala/Option.html
https://www.typescriptlang.org/docs/handbook/compiler-options.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.find
https://doc.rust-lang.org/book/ch03-01-variables-and-mutability.html#shadowing

Error Handling — recoverable Errors
Checked exceptions done right

● Error monad instead of exceptions

● Errors encoded in Type

● Result is an enum (again)

● pattern matching (again)
● Rust book on recoverable errors

What else is happening here?
● Type Placeholder (Result<i32, _>,

Err(_))

● Type annotation defines parse()’s

return type

https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html

Error Handling — unrecoverable Errors
panic!

● Sometimes you know better than the

compiler: unwrap()

● Most of the time you don’t

● This code panics: “thread 'main' panicked at 'This is a

bug.: ParseIntError { kind: Overflow }',” — unrecoverable

● Rust book on unrecoverable errors

https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html

The compiler is your friend
Rust has [...] a friendly compiler with useful error messages

● Type system catches lots of errors

● Getting code to compile can become

cumbersome

● “Compilation is the first unit test” — Scott

Hanselman (in any hanselminutes episode)

● If it compiles it works ™

https://www.hanselminutes.com

Speaking of the compiler
Let’s get down to business

● What about the other errors to

catch at compile time?

○ Use after free

○ Double free

○ (memory leakage)

○ Data races

● Garbage collection is inefficient

● Manual memory management

(malloc/free) is error prone

Ownership & Borrowing
Rust’s USP

● Each value has a variable called it’s owner

● Only one owner at a time

● When the owner goes out of scope, the

value will be dropped

● Ownership can be moved

● After move, the value cannot be accessed

anymore (could have been dropped

already), prevents use after free

Ownership & Borrowing
Sometimes you don’t need to own a value

● By passing a reference the called function

can borrow a value

● Borrows can me mutable, too (but only one

borrow at a time)

● The owning variable needs to live longer

than the borrowed variable

Did you notice?
“Only one borrow at a time” prevents data races!

Smart Pointers
When borrowing is not enough

● Owning/borrowing gets you pretty far, and is

easy to understand so far

● Rc<T> for shared ownership — almost like Automatic

Reference Counting for Objective-C/Swift

○ Problem: retain cycles

● And it’s atomic counterparts Arc<T>

● Or Mutex<T> for concurrency

● RefCell<T> for internal mutability

● Out of scope…

OK, we covered the basics

Language Features
We didn’t cover…

● Enums, pattern matching

● Structs, Traits (OOP)

● Control flow

● Collections/Iterators

● Concurrency, Async/Await

● Unsafe rust

● macros

Ecosystem
Cargo and co

● Cargo — your one-stop-solution

● Cross compilation

● Integrated testing

● Package registry — crates.io

● Rustfmt

● Linter — clippy

● WebAssembly support

● Embedded support

● Great development cycle
○ Releases every 6 weeks, backwards compatible

○ Editions for incompatible changes

○ unstable

https://crates.io
https://rust-lang.github.io/rustfmt/
https://rustwasm.github.io
https://rust-embedded.github.io/book/

Documentation
“Rust has great documentation”

● Built into cargo — cargo doc

● The book

● Examples

● The Rust Standard Library

● Reference

● Documentation of all crates

In general: https://www.rust-lang.org/learn

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/stable/rust-by-example/
https://doc.rust-lang.org/std/index.html
https://doc.rust-lang.org/stable/reference/
https://docs.rs
https://www.rust-lang.org/learn

Getting started
So, you want to learn rust?

● Read “the book”

● The Website is very useful: “Get Started”, “Install”, “Learn”, “Tools”

● Solve some programming puzzles (Project Euler, Advent of code)

● Write a microservice

● Write native extensions for your language

● Program for your Raspberry Pi in Rust

https://www.rust-lang.org
https://www.rust-lang.org/learn/get-started
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/learn
https://www.rust-lang.org/tools
https://projecteuler.net/
https://adventofcode.com
https://hackernoon.com/seamlessly-cross-compiling-rust-for-raspberry-pis-ede5e2bd3fe2

Additional resources
Food for hungry Rustaceans

● Rust Language Cheat Sheet

● Listen to the “New Rustacean” podcast (discontinued)

● Listen to “Rustation Station” podcast (unofficial successor)

● Read This week in Rust

● The Rust programming language — Google Tech Talk

https://cheats.rs
https://newrustacean.com
https://rustacean-station.org
https://this-week-in-rust.org
https://www.youtube.com/watch?v=d1uraoHM8Gg

Questions?

Thank you very much!

Bonus slides

Other sources
If you can’t get enough of rust

● “Rust is the future [...], C is the new Assembly”

○ https://www.youtube.com/watch?v=l9hM0h6IQDo

https://www.youtube.com/watch?time_continue=1&v=l9hM0h6IQDo

Crates you should know

● Rayon — parallel iterators, putting all your Cores to work

● Clap — Command line argument parsing

● Serde and serde_json — serialization and deserialization

● Diesel — go to ORM/persistence

● Actix Web — current web framework with most momentum

https://crates.io/crates/rayon
https://crates.io/crates/clap
https://crates.io/crates/serde
https://crates.io/crates/serde_json
https://crates.io/crates/diesel
https://crates.io/crates/actix-web

Success stories

● Mozilla: Over the course of its lifetime, there have been 69 security bugs in Firefox’s style component. If
we’d had a time machine and could have written this component in Rust from the start, 51 (73.9%) of
these bugs would not have been possible.

● Zalando: “a real cost saver”

● Npm: “npm chose Rust to handle CPU-bound bottlenecks.”

● Deliveroo: “moving from Ruby to Rust was a success that dramatically sped up our dipatch process, and
gave us more head-room in which we could try implementing more advanced algorithms.” [SIC]

https://hacks.mozilla.org/2019/02/rewriting-a-browser-component-in-rust/
https://jobs.zalando.com/tech/blog/story-rust/
https://www.rust-lang.org/static/pdfs/Rust-npm-Whitepaper.pdf
https://deliveroo.engineering/2019/02/14/moving-from-ruby-to-rust.html

Things written in Rust

● Wireguard: Wireguard rewrite, Userspace wireguard
● HVVM: Migrating from OCaml
● Facebook’s Libra may be controversial, but it’s also written in Rust
● Firefox’ Quantum and of course servo
● Redox OS, a full operating system written in Rust
● Microsoft not only blogs about Rust, but uses it and supports its usage

https://git.zx2c4.com/wireguard-rs
https://github.com/cloudflare/boringtun
https://hhvm.com/blog/2019/08/27/hhvm-4.20.0.html
https://developers.libra.org/docs/libra-core-overview#docsNav
https://medium.com/mozilla-tech/a-quantum-leap-for-the-web-a3b7174b3c12
https://servo.org
https://www.redox-os.org
https://github.com/Azure/iotedge/tree/master/edgelet
https://github.com/MindFlavor/AzureSDKForRust

Integrating Rust with other languages
Perfect opportunity to sneak Rust into prod

● Neon bindings for NodeJS

● Native Ruby Extensions with Helix

● For python there is PyO3

https://neon-bindings.com
https://usehelix.com
https://pyo3.rs/

Linux kernel and Rust

● Framework for writing Linux kernel modules in safe Rust: github: fishinabarrel/linux-kernel-module-rust

● Rust driver framework could land upstream lwn.net/Articles/797828/

https://github.com/fishinabarrel/linux-kernel-module-rust
https://lwn.net/Articles/797828/

