“Rust looks a lot better than other

disasters” — aRust introduction
Meetup REWE Digital Imenau '

REWE digital

Willkommen zu OCaml!
@ oo s v

Wir haben ,neue Kolleginnen”! %= Quasi neben
unserem Buro in lImenau kampiert derzeit ein
Zirkus. #rewedigitalTH

Translate Tweet

12:27 PM - Sep 17, 2019 - Twitter for iPhone o ‘ a m l

7 Likes ‘

REWE digital

Fun Fact

e First Rust Compiler written in OCaml (bootstrap)
e Rust does not have Bactrian camel (Trampeltier) but
Ferris the Crab

e Ferris would have also been a wonderful title

REWE digital

About me

Elmar Athmer

34 years old

e programming since 1998

e Livingin Kassel

e Working at REWE Digital for 3 years
e |like video games (Civilization, vyay)

e And running (HM PB 1:43:26), Full Marathon Berlin in 1,5 weeks :)

REWE Oigital

Agenda

1) The Hype

2) Rust's promises

3) Safety vs Control

4) Rust basics

5) Ownership and Borrowing
6) Not covered

7) Outro & Questions

REWE digital

“"Rust looks a lot better than either of
those two disasters”

o “We've had the [...] people who used Modula-2 or Ada, and | have to say Rust looks a lot better than
either of those two disasters.”

e "I'm not convinced about Rust for an OS kernel [...] but at the same time there is no question that C has
a lot of limitations”

e Do you remember...

Source: Linux at 25: Linus Torvalds on the evolution and future of Linux

REWE digital

https://www.infoworld.com/article/3109150/linux-at-25-linus-torvalds-on-the-evolution-and-future-of-linux.html

What about other languages?

e "C++isahorrible language.” — http://harmful.cat-v.org/software/c++/linus

e “Imean Java — I don't care about it, what a horrible language” —
https://www.youtube.com/watch?v=Aa55RKWZxx|&t=44s

e "The advantage of GCis that it is automatic. But GC apologists should just admit that it causes bad
problems and often encourages people to write code that performs badly.” —

https://gcc.gnu.org/ml/gcc/2002-08/msg00552.html

REWE digital

http://harmful.cat-v.org/software/c++/linus
https://www.youtube.com/watch?v=Aa55RKWZxxI&feature=youtu.be&t=44s
https://gcc.gnu.org/ml/gcc/2002-08/msg00552.html

Most Loved, Dreaded, and Wanted Languages

Loved Dreaded Wanted

Rust
Python
TypeScript
Kotlin
WebAssembly
Swift
Clojure
Elixir

Go

Cc#
JavaScript
Dart

SQL
HTML/CSS
F#
Bash/Shell/PowerShell
Scala

Java

C++

R

Ruby
Erlang

PHP

C

Assembly

83.5% I
73.1% I
73.19%
72.6% I
69.5% I
69.290 [
68.3% I
68.29 I
67.9% [
67.09 [
66.8% I
66.3% I
64.1% I
62.29 [T
61.7% I
59.50 I

58.3% I

53.4% I

52.0% I

5179

s0.39 ENE——

47.4% I

45.8% I

425%

35.6% [T

What about non-Torvalds?

Stack Overflow Developer Survey 2019

“For the fourth year in a row, Rust is the most loved
programming language among our respondents.”

https://insights.stackoverflow.com/survey/2019#technology-_-
most-loved-dreaded-and-wanted-languages

REWE digital

https://insights.stackoverflow.com/survey/2019#technology-_-most-loved-dreaded-and-wanted-languages
https://insights.stackoverflow.com/survey/2019#technology-_-most-loved-dreaded-and-wanted-languages

05 Developers;

e

Enterprise

Those penguin-lunatics...

Another quote

“Now we'll peek at why we think that Rust represents the
best alternative to C and C++ currently available”

“This means that if that software had been written in Rust,

70% of these security issues would most likely have been
eliminated.”

https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe

-systems-programming/

REWE digital

https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming/
https://msrc-blog.microsoft.com/2019/07/22/why-rust-for-safe-systems-programming/

REWE digital

“It's not everywhere

it's tMaader-Meinhoi Phenomenon

What's the Baader-Meinhof phenomenon

REWE Sigital

https://science.howstuffworks.com/life/inside-the-mind/human-brain/baader-meinhof-phenomenon.htm

Developed by Mozilla since 2009/2010, 1.0 on 2015-05-15

Open Source, Multi-paradigm system programming language
Provides memory safety
Provides thread safety
No Garbage Collection
o No runtime overhead
o Integrates with other Programming Languages (FFI)

C++ like performance

Strong, static typing

REWE digital

https://blog.rust-lang.org/2015/05/15/Rust-1.0.html

Multi-Paradigm, System programming

Oh, and OpenSource of course

e (Concurrent

e Functional (“passing functions as values”, map, filter)
e Meta-Programming (Macros)

e Imperative (the “default”)

e Object Oriented (should be familiar for most)

Get the buzzword checklist at wikipedia.

REWE digital

https://en.wikipedia.org/wiki/Comparison_of_multi-paradigm_programming_languages

Multi-Paradigm, System programming

Oh, and OpenSource of course

e Operating Systems

e Software interacting closely with the operating systems
e \Web Browsers (are more of a platform)

e Incontrast to application development

e Typical examples are

o (C C++

o Maybe Go

REWE digital

\ Why should I ¢a

REWE Sigifal

Now you CAN

PEN

: y &",. 5:
o r . s'\ " i .'...
do systemiprogramming
e T S 3

REWE digital

Side note

How much “performance” is necessary?

e General rule: a developer is more expensive than hardware

e |Qisthe real cost (that's why Node)S works)

e Onthe other hand — performance is not wrong
o Developers spend much time NOT coding, so the relative cost for e.g. Rust overhead is small
o It's not "worrying about efficiency in the wrong places [...] (premature optimization...)

e Code Rust like your high-level language (map (), clone ()), your high-level language is just so

wasteful with EVERY operation

REWE digital

Sometime performance does matter

How much “performance” is necessary?

e Sometimes, costs are relevant: “a real cost saver” (Zalando about Rust with Kubernetes)

e Sometimes, performance is an enabler for new business logic/opportunities: Deliveroo: “[...]
dramatically sped up our dipatch process, and gave us more head-room in which we could try
implementing more advanced algorithms.” (SIC)

e Functions as a service, Google Cloud Run etc.: startup, charged by exact execution time

e |OT, Raspberry Pi: Limited Resources (don't forget battery)

REWE digital

https://jobs.zalando.com/tech/blog/story-rust/
https://deliveroo.engineering/2019/02/14/moving-from-ruby-to-rust.html

Memory safety, Thread safety?

REWE digital

Use after free

No problem with GC

r

char* ptr = (charx)malloc (SIZE);

if (err) {
abrt = 1;
free(ptr);
}

if (abrt) {
logError("operation aborted before commit", ptr);

}

Source: https://www.owasp.org/index.php/Using_freed _memory

https://www.owasp.org/index.php/Using_freed_memory

Double free XK

No problem with GC

e (onfusion over which part of the program is char* ptr = (char*)malloc (SIZE);
responsible for freeing the memor a(ptr);

i ° / b(ptr);

void a(char* ptr) {
// do something with ptr

free(ptr);
}
void b(char* ptr) {
Source: // do something with ptr
https://www.owasp.org/index.php/Doubly_freeing_memory free(ptr);
}

| V|

REWE digital

https://www.owasp.org/index.php/Doubly_freeing_memory

Buffer overflow

Safe if programming language disallows direct memory access

r

e The buffer to store data overflows o0

e Nice (german) explanation:))
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

https://www.heise.de/ct/artikel/Das-Sicherheitsloch-28532
0.html

void main(void) {
char str[100] = scanf("%s");
printf("%ss", str);

Source; https://www.owasp.org/index.php/Buffer_Overflows

REWE digital

https://www.heise.de/ct/artikel/Das-Sicherheitsloch-285320.html
https://www.heise.de/ct/artikel/Das-Sicherheitsloch-285320.html
https://www.owasp.org/index.php/Buffer_Overflows

Null pointer dereference
Ever encountered one of these?

You get a NullPointerException

e NullPointerException
e "undefined is not a function”
e “can not read property 'x’ of undefined”

e Aka "The billion dollar mistake”

__andyou geta NullPointerException

REWE digital

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/

Data Race

Not to be confused with race condition

two or more threads concurrently
accessing a location of memory

e oneof themis a write

e one of them is unsynchronized

e Alsosee

https://www.modernescpp.com/index.php/
race-condition-versus-data-race

Source;

https://doc.rust-lang.org/nomicon/races.html

o000

class BankAccount {
int balance = 1000;

pay_insurance() {
new_balance = balance - insurance_amount;
balance = new_balance;

}

pay_rent() {
new_balance = balance - rent_amount;
balance = new_balance;

}

start_of_month() {
thread.spawn(pay_insurance);
thread.spawn(pay_rent);
}
¥

REWE digital

https://www.modernescpp.com/index.php/race-condition-versus-data-race
https://www.modernescpp.com/index.php/race-condition-versus-data-race
https://doc.rust-lang.org/nomicon/races.html

Safety vs Control

You can have hoth

REWE digital

Hello World

Let's have a look into Rust

C like syntax

Main is a simple function
Type inference

Variables defined with let

f

}

n main() {
let name = "World";
println!("Hello {}", name);

REWE digital

Variables and datatypes

Nothing revolutionary here

e Immutable by default (safety)

e Explicit mutability with mut keyword

e Type annotation after variable name

o Like TypeScript, Scala, etc.

e Lots of number types (i32, i8-i128,
unsized etc, remember: control)

e \ector as versatile collection type

e Tuples

e Fulllist
https://doc.rust-lang.org/reference/types.html

let mut counter: 132 = 0;
counter = counter + 1;

let list: Vec<i32> = vec![1, 2, 3];

let coord = (5, 6);

REWE digital

https://doc.rust-lang.org/reference/types.html

Null Pointer dereference protection

Must have for modern languages

e Option monad instead of null

e Known as/other solutions

o Maybe in Haskell

o Optional in Java

o Option in Scala

o strictNullChecks in TypeScript

° Option is an Enum

What else is happening here?
° find () — functiona
° Pattern matching

° Shadowing is idiomatic rust

enum Option<T> {
Some(T),
None,

}

fn sample() {
let 1 = vec![1, 2, 3];

let one: Option<&i32>
let one: Option<&str>

match one {

None => println!("No one"),
Some(val) => println!("Found Some {}", val),

L.iter().find(|&&e]| e == 1);
one.map(|_o]

REWE digital

http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Maybe.html
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html
https://www.scala-lang.org/api/current/scala/Option.html
https://www.typescriptlang.org/docs/handbook/compiler-options.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.find
https://doc.rust-lang.org/book/ch03-01-variables-and-mutability.html#shadowing

Error Handling — recoverable Errors

Checked exceptions done right

Error monad instead of exceptions

Errors encoded in Type
Result is an enum (again)

pattern matching (again)

Rust book on recoverable errors

What else is happening here?

Type Placeholder (Result<i32, >,
Err(_))

Type annotation defines parse ()’s

return type

enum Result<T, E> {
0k(T),
Err(E),

}

fn sample() {
let input = "20 years";
let age: Result<i32, _> = input.parse();

match age {
Ok(a) => println!("{} years", a),
Err(_) => println!("'{}' is not a valid number"

};

, input),

REWE digital

https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html

Error Handling — unrecoverable Errors

panic!

Sometimes you know better than the
compiler: unwrap ()
Most of the time you don't

This code panics: “thread 'main’ panicked at ‘This is a
bug.: ParselntError { kind: Overflow }" — unrecoverable

Rust book on unrecoverable errors

fn sample_unrecoverable() {

let localhost: IpAddr = "127.0.0.1".parse().unwrap();

let age: Result<i8, _> = "256".parse();
age.expect("This is a bug.");

REWE digital

https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html

The compiler is your friend

Rust has [...] a friendly compiler with useful error messages

e Type system catches lots of errors

e Getting code to compile can become
cumbersome

e "Compilation is the first unit test" — Scott
Hanselman (in any hanselminutes episode)

e Ifitcompilesitworks ™

REWE digital

https://www.hanselminutes.com

Speaking of the compiler

Let's get down to business

What about the other errors to
catch at compile time?

o Use after free

o Double free

o (memory leakage)

o Dataraces
Garbage collection is inefficient
Manual memory management

(malloc/free) is error prone

Memory Management

REWE digital

Ownership & Borrowing

Rust's USP

fn main() {
. - let a = String::from("my value");
e Eachvalue has a variable called it's owner ,
// a moved to function
. let b = do_something_with(a);
e Only one owner at a time
// b moved here
let _: () = do_something_else(b);
e When the owner goes out of scope, the
// err: value used here after move
do_something_with(b);

value will be dropped }
fn do_something_with(value_of_a: String) -> String {
™ Ownersh|p can be moved // new value created here
let new_value = format!("given value is {} chars long", value_of_a);
e After move, the value cannot be accessed // a dropped here
// this moves the new_value to a new owner (caller)
anymore (could have been dropped | e
alread\/)’ prevents use after free fn do_something_else(value_of_b: String) {

if b.contains(" ") {
println!("string contains spaces")

¥

// value_of_b dropped here
}

REWE digital

Ownership & Borrowing

Sometimes you don't need to own a value

e By passing a reference the called function
can borrow a value

e Borrows can me mutable, too (but only one
borrow at a time)

e The owning variable needs to /ive longer

than the borrowed variable

Did you notice?

"Only one borrow at a time" prevents data races!

r

fn main() {
let a = String::from("my value");

let _len_of_a = calculate_length(&a);
let mut my_values = vec![&a];

let my_values_borrowed = &mut my_values;

// cannot borrow ‘my_values' as mutable more than once
// at a time

let my_values_borrowed2 = &mut my_values;

// borrow a mutable reference. Only one
add_a_value(my_values_borrowed)

}

fn calculate_length(s: &String) -> usize {
s.len()

}

fn add_a_value(list: &mut Vec<&String>) {
let new_value = String::from("my new value");
// borrowed value does not live long enough
list.push(&new_value);

REWE digital

Smart Pointers

When borrowing is not enough

e Owning/borrowing gets you pretty far, and is
easy to understand so far

e Rc<T> for shared ownership — almost like Automatic

Reference Counting for Objective-C/Swift

o Problem: retain cycles

e Andit's atomic counterparts Arc<T>
e OrMutex<T> for concurrency
e RefCell<T> forinternal mutability

e Outof scope...

lican have Extrawurst?

REWE digital

OK, we covered the basics

A /1= I

What else can you ofier?
- S LB
» Wﬁ“"’_ T sl S

o \ ‘\e ” . ;;:%\: .
B Whaflise caniyou offemz

S

"What else can you offer?

~
~
. "a
~

What else gan yoti o

REWE digital

Language Features

We didn't cover...

e Enums, pattern matching
e Structs, Traits (OOP)

e Control flow

e (ollections/Iterators

e Concurrency, Async/Await
e Unsaferust

) Macros

REWE digital

Ecosystem

Cargo and co

e (argo — your one-stop-solution
e (ross compilation

e Integrated testing

e Package registry — crates.io

e Rustfmt

e Linter — clippy

e WebAssembly support

e Embedded support
e (Great development cycle

o Releases every 6 weeks, backwards compatible
o Editions for incompatible changes

o unstable

REWE digital

https://crates.io
https://rust-lang.github.io/rustfmt/
https://rustwasm.github.io
https://rust-embedded.github.io/book/

Documentation

"Rust has great documentation”

THE RUST
e Builtinto cargo — cargo doc PROGRAMMING
T LANGUAGE
° e book
e Examples

e The Rust Standard Library

e Reference

e Documentation of all crates

In general: https:/www.rust-lang.org/learn

REWE digital

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/stable/rust-by-example/
https://doc.rust-lang.org/std/index.html
https://doc.rust-lang.org/stable/reference/
https://docs.rs
https://www.rust-lang.org/learn

Getting started

So, you want to learn rust?

e Read "the book”

e The Website is very useful: “Get Started”, “Install’, “Learn”, “Tools”

e Solve some programming puzzles (Project Euler, Advent of code)

e \Write a microservice
e \Write native extensions for your language

e Program for your Raspberry Pi in Rust

REWE digital

https://www.rust-lang.org
https://www.rust-lang.org/learn/get-started
https://www.rust-lang.org/tools/install
https://www.rust-lang.org/learn
https://www.rust-lang.org/tools
https://projecteuler.net/
https://adventofcode.com
https://hackernoon.com/seamlessly-cross-compiling-rust-for-raspberry-pis-ede5e2bd3fe2

Additional resources

Food for hungry Rustaceans

Rust Language Cheat Sheet

Listen to the “New Rustacean” podcast (discontinued)

Listen to “Rustation Station” podcast (unofficial successor)

Read This week in Rust

The Rust programming language — Google Tech Talk

REWE digital

https://cheats.rs
https://newrustacean.com
https://rustacean-station.org
https://this-week-in-rust.org
https://www.youtube.com/watch?v=d1uraoHM8Gg

Other sources

If you can't get enough of rust

e "Rustisthe future[...], Cis the new Assembly”

o https://www.youtube.com/watch?v=19hM0h61QDo

REWE digital

https://www.youtube.com/watch?time_continue=1&v=l9hM0h6IQDo

Crates you should know

e Rayon — parallel iterators, putting all your Cores to work
e (lap — Command line argument parsing

e Serde and serde_json — serialization and deserialization
e Diesel — go to ORM/persistence

e Actix Web — current web framework with most momentum

REWE digital

https://crates.io/crates/rayon
https://crates.io/crates/clap
https://crates.io/crates/serde
https://crates.io/crates/serde_json
https://crates.io/crates/diesel
https://crates.io/crates/actix-web

Success stories

e Mozilla: Over the course of its lifetime, there have been 69 security bugs in Firefox's style component. If
we'd had a time machine and could have written this component in Rust from the start, 51 (73.9%) of
these bugs would not have been possible.

e Zalando: “areal cost saver”

e Npm: “npm chose Rust to handle CPU-bound bottlenecks.”

e Deliveroo: “moving from Ruby to Rust was a success that dramatically sped up our dipatch process, and
gave us more head-room in which we could try implementing more advanced algorithms.” [SIC]

REWE digital

https://hacks.mozilla.org/2019/02/rewriting-a-browser-component-in-rust/
https://jobs.zalando.com/tech/blog/story-rust/
https://www.rust-lang.org/static/pdfs/Rust-npm-Whitepaper.pdf
https://deliveroo.engineering/2019/02/14/moving-from-ruby-to-rust.html

Things written in Rust

e Wireguard: Wireguard rewrite, Userspace wireguard

e HVVM: Migrating from OCaml|

e Facebook’s Libra may be controversial, but it's also written in Rust

e Firefox’ Quantum and of course servo

e Redox OS, a full operating system written in Rust

e Microsoft not only blogs about Rust, but uses it and supports its usage

REWE digital

https://git.zx2c4.com/wireguard-rs
https://github.com/cloudflare/boringtun
https://hhvm.com/blog/2019/08/27/hhvm-4.20.0.html
https://developers.libra.org/docs/libra-core-overview#docsNav
https://medium.com/mozilla-tech/a-quantum-leap-for-the-web-a3b7174b3c12
https://servo.org
https://www.redox-os.org
https://github.com/Azure/iotedge/tree/master/edgelet
https://github.com/MindFlavor/AzureSDKForRust

Integrating Rust with other languages

Perfect opportunity to sneak Rust into prod

e Neon bindings for Node)S
e Native Ruby Extensions with Helix

e Forpython there is PyO3

REWE digital

https://neon-bindings.com
https://usehelix.com
https://pyo3.rs/

Linux kernel and Rust

e Framework for writing Linux kernel modules in safe Rust: github: fishinabarrel/linux-kernel-module-rust

e Rustdriver framework could land upstream |wn.net/Articles/797828/

REWE digital

https://github.com/fishinabarrel/linux-kernel-module-rust
https://lwn.net/Articles/797828/

